

ТЕТА. Регенеративный фемтосекундный усилитель

- Один из самых компактных лазеров в своем классе
- Высокое качество пучка и М2 < 1.15
- Средняя мощность > 20 Вт
- Более 2 мДж в импульсе
- Длительность импульса <180 фс (опц. <30 фс)
- Высокая температурная и долговременная стабильность
- Монолитный термостабилизированный корпус

Лазерная система ТЕТА-10

Описание

Лазерная система ТЕТА со встроенными генераторами гармоник

19-дюймовая стойка блока управления со встроенным чиллером замкнутого контура

Предлагаемая лазерная система на иттербии построена на принципе усиления чирпированных импульсов и включает в себя волоконный задающий генератор фемтосекундных импульсов, волоконный стретчер, изолятор Фарадея, регенеративный усилитель с диодной накачкой, дополнительную ячейку Поккельса и компрессор импульсов. Все компоненты лазерной системы интегрированы в единый термостабилизированный корпус, что обеспечивает устойчивый режим работы и беспроблемную эксплуатацию. Дополнительная ячейка Поккельса позволяет понижать частоту следования импульсов до заданного значения, мгновенно включать/выключать излучение на выходе лазерной системы с помощью внешнего сигнала, а также формировать цуги излучения с заданным числом лазерных импульсов.

Лазерная система может комплектоваться блоком преобразования излучения во вторую, третью или четвертую гармоники, оптическим параметрическим усилителем серии PARUS (320-9000 нм), капиллярным компрессором Compulse-1030 (<30 фс с энергетической эффективностью >50%), системой стабилизации фазы огибающей импульса (CEP), системой частотной привязки (PLL, ΦΑΠԿ).

Сферы применения:

Исследования со сверхвысоким временным разрешением Спектроскопия оптического зондирования (pump-probe)

Накачка оптических параметрических усилителей (ОПУ)

Генерация второй гармоники (ВГ)

Преобразование лазерного излучения

Генерация третьей гармоники (ТГ)

Генерация четвертой гармоники (ЧГ)

Генерация терагерцового излучения

Обработка материалов и биологических тканей

Микромашининг сверхкороткими импульсами Фемтосекундная абляция

Удаление материала путем «холодной абляции» Реставрация фотошаблонов

Разработка лазерных систем, интеграция и усиление Накачка для ПГС


Стартовый комплекс для ТВт (тераваттных) и ПВт (петаваттных) установок

ОЕМ-интеграция, контрактное производство

Физика высоких энергий

Задающий источник для лазеров на свободных электронах (ЛСЭ) и их диагностика

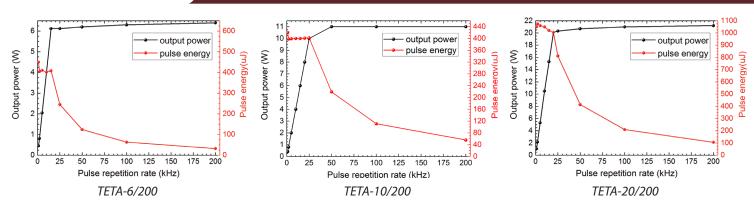
	TETA-6	TETA-10	TETA-20
Центральная длина волны ¹⁾	1035±10 нм (фикс.)		
Максимальная средняя мощность	6 Вт	10 Вт	20 Вт
Максимальная энергия в импульсе	>400 мкДж в базовой версии; >2 мДж при 2 кГц, >1 мДж при ≥6 кГц в модификации -HE		
Минимальная длительность импульса ²⁾	<270 фс в базовой версии; <180 фс в модификации -SP		
Перестройка длительности импульса ²⁾	от минимальной до 10 пс		
M^2	<1.15 в базовой версии; <1.25 в модификации -НЕ		
Диаметр пучка (по уровню 1/е^2)	3.2±0.5 мм в базовой версии; 4.5±1 мм в модификации -HE		
Частота следования импульсов (регулируемая)	одиночный200 кГц в базовой версии одиночный1 МГц по запросу		
Контраст по пред- и постимпульсам	>5000:1		
Долговременная стабильность ³⁾	<0.5% rms за 48 часов		
Выходная поляризация	линейная, вертикальная		
Пространственная мода	TEM00		
Эллиптичность пучка4)	<10%		
Астигматизм ⁴⁾	<10%		
Расходимость пучка (полный угол)	<0.6 мрад		
Стабильность направления пучка	<25 мкрад/°C		
Время выхода на режим при холодном старте (положение пучка, средняя мощность)	<40 минут		
Требования к	электропитанию и пом	лещению	
Температура воздуха	15-30 ℃		
Относительная влажность	<60%, без образования конденсата		
Питание	однофазное; 100-240 В АС; 50/60 Гц		
Потребление	<1.5	5 кВт	<2 кВт

1) - по запросу: генераторы второй, третьей и четвертой гармоник (возможны встраиваемые версии); параметрические усилители и ГРЧ; также для изменения длины волны на 1530 нм или 1890 нм можно использовать рамановский преобразователь RS; 2) — длительность импульса измерена интерферометрическим автокоррелятором <u>AA-10DD-12PS</u>, аппроксимация по sech^2; моторизованная перестройка до 10 пс с управлением от ПК вместе с ПО входит в стандартную поставку; также возможно использование компрессора <u>Compulse-1030</u> для получения импульсов длительностью <30 фс;

480х250х148 мм

553х600х663 мм

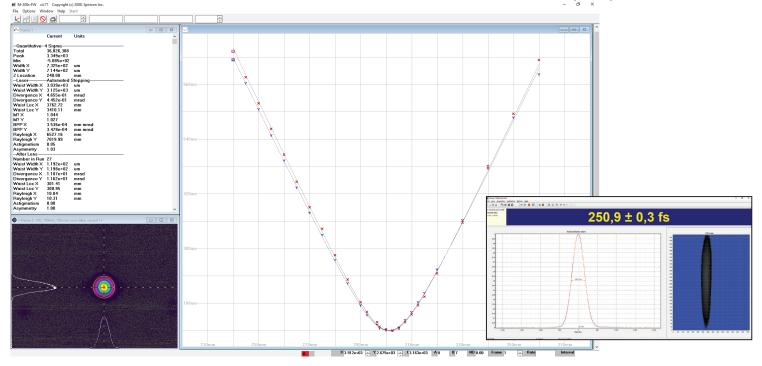
3 м

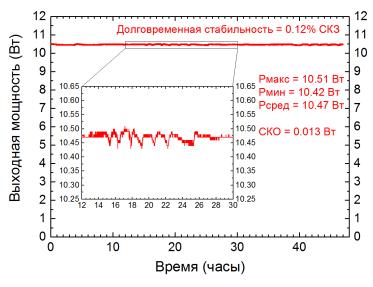

3) - при стабильных условиях окружающей среды;

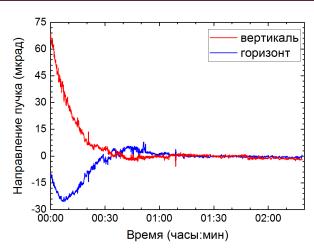
Стойка 19» блока питания и управления (ШхДхВ)

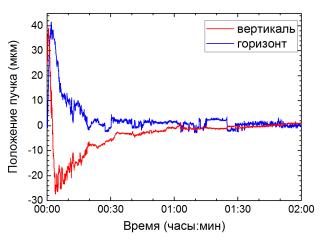
Оптический блок (ДхШхВ)

Длина соединительных проводов

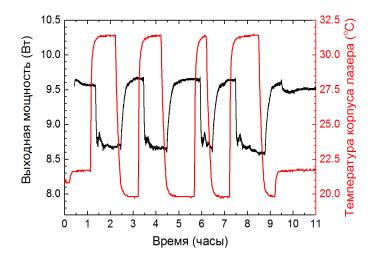

4) - измерено при максимальной выходной мощности на частоте 100 кГц. В других режимах параметры могут незначительно отличаться.


Выходная мощность и энергия в импульсе относительно частоты повторения выходного импульса в системе ТЕТА

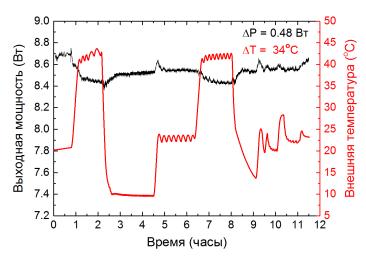

550х350х148 мм


Измерение M² и длительность импульса системы ТЕТА

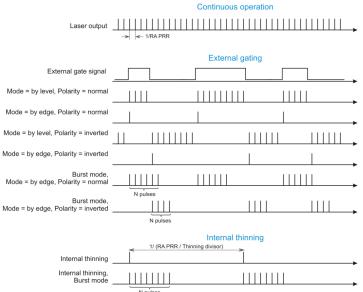
Долговременная стабильность ТЕТА-10 в течение 48-часового цикла (0.12% скз)



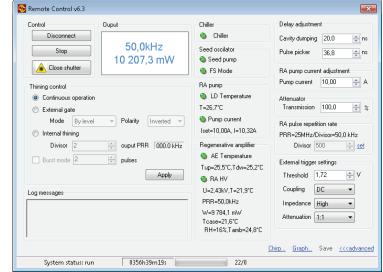
Направление пучка системы ТЕТА-10



Позиционирование пучка системы ТЕТА-10

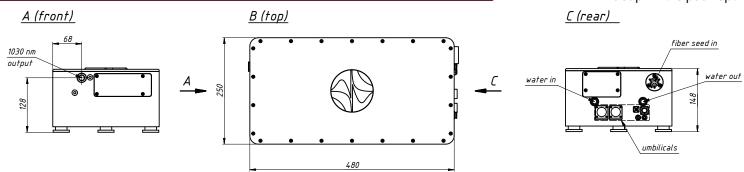


Термоциркуляция ТЕТА-10 с большой разницей Т за пределами рабочей температуры

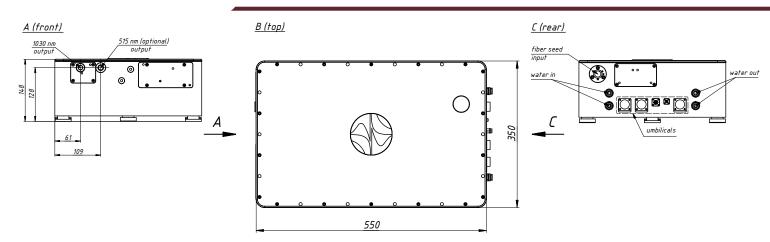


Тепловая нагрузка ТЕТА-10 с отключенным стабилизирующим чиллером. Тест используется для демонстрации жесткости механической конструкции ТЕТА и повторяемости выходных параметров после транспортировки или длительных периодов простоя

Управление системой

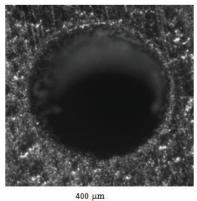


Обзор режимов управления ТЕТА

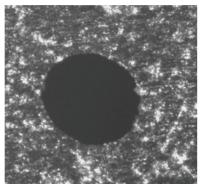


Программное обеспечение системы ТЕТА

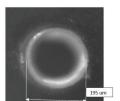
Габаритные размеры оптического блока ТЕТА-3-НЕ/ ТЕТА-6/ТЕТА-10 в мм



Габаритные оптического блока ТЕТА-20 в мм

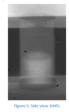

Применение системы

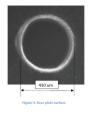
Material: Titanium alloy, thickness 2.5 mm.


Front surface:

Rear surface:

Отверстие диаметром 400 мкм в титановом сплаве толщиной 2,5 мм




системой ТЕТА

Бурение отверстий в сапфировой пластине толщиной 440 мкм

rev20_05